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1. Introduction 

In this paper, a complex system built of independent repairable components with constant 

failure and repair rates is considered. The system can operate in a finite number of operation 

modes, and its functioning is modeled by a Markov chain on the state space {O, 1, ... , z}. The 

individual modes are represented by the sta tes {1, ... ,z}, the failed system is represented by 

the state 0. The paper's aim is to present analytical formulas for the system's key reliability 

parameters, derived by the author. 

As an example, let us take a sma ll power supply network (microgrid) whose reliability 

block diagram (RBD) is displayed in Fig. 1. The boxes denoted e1, ... ,e8 represent the 

network's components listed below. 

e1 - distribution company's network 

e2 - renewable source connected to es 

e3 - low voltage bus bar 

e4 - low voltage cut-off switch + low voltage cable line+ low voltage cut-off switch 

es - load point (LP) 

e6 - transfer switch + low voltage cut-off switch 

e7 - low voltage cut-off switch + low voltage cable line+ low voltage cut-off 

e8 - load point 

Remark: + denotes the serial connection between elements of e4, e6, or e7 . The failure and 

repair rates of e4, e6, and e7 can be found from (S) and (6), where 5={0,1}, 0 <d 1. 
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Fig. 1. RBD of a small power supply network. Arrows indicate the end fragment of an 

emergency supply path to es. 

The exemplary microgrid is supplied from two power sources - the network of a distribution 

company, and a renewable energy source (e.g. a wind turbine). It also has two load points 

which supply power to the connected customers. Let us shortly analyze the network's 

functioning, with LP es chosen as the point of reference. Two modes of operation are 

distinguished - normal and emergency ones. If all elements along the path (e1, e3, e7, es) or 

(e2, es, e4, e3, e7, es) are operable, then es is supplied in normal mode. When this is no longer 

possible, because, for example, e3 or e7 is failed, the supply of es is switched to emergency 

mode by the transfer switch in e6, provided that all elements along the path (e2, es, e5, es) or 

(e1, e3, e4, e5, e6, es) are operable. The supply of es is switched back into normal mode when 

this mode is restored . Obviously, if both normal and emergency modes are failed, then a 

power outage occurs at es. The functioning of es can thus be modeled by a three-state 

stochastic process on the state space {O, 1, 2}. 

We now give an outline of the paper. The paper is composed of five main sections 

numbered 3 through 6 and the 7-th concluding section. In section 3 the Markov property of 

the random process modeling the considered system' s behavior is proved . The formulas for 

computing the system's key reliability parameters, i.e. the state probabilities and the inter­

state transition intensities of the modeling process, are derived in sections 5 and 6 for which 
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the theoretical background is presented in sections 3 and 4. The considerations of section 6 

are based on the above given example, but can easily be extended to the general case. In 

section 7 it is shown how other parameters, characterizing the dynamics of switching 

between basic and emergency modes, can be obtained. 

Readers interested in the reliability of power distribution systems (such a system 

serves as an example here) are referred to [2], while those needing an insight into the 

general theory of reliability-to [1] and [6]. 

2. Notation 

The following notation will be used throughout the paper: 

{e;, 1 sis n}-the set of the system's components 

J = {1, ... ,n}- the set of the components' indices 

A.;, ~L; - the failure and repair intensities of the component e; 

x; - a binary variable representing the state of e;; x;=l/x;=O if e; is operable/failed 

x - the components' states vector, x = [x1, ... ,x0] 

{O, 1}° - the set of binary vectors of length n 

[x, 1;], [x, O;] - the vector x with i-th coordinate set to 1 or O respectively 

d(x, y) - the number of coordinates in which the vectors x and y differ (the Hamming 

distance) 

X;(t) - the state of the component e; at time t 

p;(t), q;(t) - the state probabilities of X;(t), i.e. p;(t) = Pr[X;(t)=l], q;(t) = Pr[X;(t)=O] 

X(t) -the components' states vector at time t, i.e. X(t) = [X1(t), ... ,X0 (t)] 

<P(x) - the system's structure function expressing the system's state in relation to the 

components' states 
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S - the set of the system's states with the partial order transferred by <1> from the partial 

order in {O, 1}", i.e. 

(x,y E {O,l}n) A (x < y) • <J:>(x) ~ <IJ(y) (1) 

where< and:<::: denote the strong and weak precedence relations in both {0,1}" and S. We 

adopt the usual partial order in {0,1}", i.e. x<y for x,yE{0,1}" if d(x,y)>O and y;-x;=l for each 

X; a' y;. 

<d - the direct precedence relation in both {0,1}" and S 

Z(t) - the system's state ,it time t, i.e . Z(t) = <!>(X(t)) 

Z - the stochastic process (Z,, t;:,:o), where z, = Z(t) 

P.(t) - the state probability of Z at time t, i.e. P.(t) = Pr[Z(t)=a], a ES 

Aa• b(t) - the intensity with which Z changes its state from a to b at time t (a transition 

intensity), defined as follows : 

Aa~b(t) = lim~t • a2.Pr[Z(t +tit)= b I Z(t) = a] 
M 

na• bcrit( i) - the set of binary vectors x such that x;=l, <!>(x)=a, and <!>(x, O;)=b 

0a• bcrit(i)-the set of binary vectors x such that x;=O, <!>(x)=a, and <!>(x, l;)=b 

I • ...,b( i) - the importance of e; to a transition between a and b, defined as follows: 

I (i) - Pr[X E n crit (;) I X - 1] - Pr[X E ecrit (i) I X - o] a-b - a-+b " r - - b--+a t -

(2) 

(3) 

i.e. I.,...b(i) is the probability that the failure/repair of e; causes a transition from a to b, given 

that e; is operable/failed. 

v -the "Boolean" sum of real numbers from the [O, 1] interval, defined as r1 v r2 = r1 + (1- r,lr2, 

where r1, r2 E[0, 1] 
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Remark 1: It was shown in (1) that 

P·(t) =_I!_!_+ ~exp[-(il. + µ·)t] 
L ilt+µt ilt+µt L L I 

(4) 

Remark 2: If xEna• bcrit(i) then we say that xis critical to the system's transition from state a 

to b caused by e;'s failure. If, in turn, xE0a• bcrit(i) then we say that xis critical to the system's 

transition from state a to b caused by e;'s renewal. These notions of criticality are 

generalizations of a path-vectors' or a cut-vectors' criticality for a two-state system. Clearly, 

Remark 3: l,,...b( i) is a generalization of the Birnbaum importance for a two-state system 

Remark 4: x <d y if and only if d(x,y)=l and y;-x;=l for x; 1' y;. 

3. The theoretical background 

We begin this section with three lemmas of auxiliary character that will be used to prove the 

main result - a theorem giving the formulas for the transition intensities of the process Z, i.e. 

intensities of transitions between different modes of the system's operation. 

Lemma 1 

Let a,bES. If the strong precedence relation between a and b holds, i.e. a<b, then x<y for 

Proof: Let us assume that a<b and x°?.y for certain xE¢-1(a), yE<:t>-1(b). Then c::t>(x)°?.<:t>(y), since 

<:t> transfers the partial order from {0,1}" to 5. As c::t>(x)=a and <:t>(y)=b, the latter inequality 

contradicts the assumption. This ends the proof. 
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Lemma 2 

Let a,bES, a;cb. The direct precedence relation between a and b holds, i.e. a <db, if and only 

Proof: Let us assume that a <db and take arbitrary vE<D-1(a), wE<D-1(b). Then v < w according 

to Lemma 1. If ~(v <d w) then there exist z1, .. ,,zk such that v <d z1 <d z2 < ... <d Zk <d w. Clearly, 

a= <D(v) $ <D(z1) $ ... $ <D(zk) $ <D(w) = b, as <D transfers the partial order from {0,1}" to S. 

Since a <db, there exists iE{0,1, ... ,k} such that <D(v) = ... = <D(z;) < <D(z;+1) = ... = <D{w), where 

z0 = v, Zk+l = w. Thus x=z; and y=z;+1 fulfill the right-hand side condition. To prove the opposite 

implication, let us assume that the right-hand side condition holds and ~(a <db), i.e. 

~(<D(x) <d <D(y)). Since <D(x) < <D(y), there exists cES such that <D(x) < c < <D(y). <Dis a surjection 

from {0,1}" to 5, hence there exists ZE{0,l}" such that <D(x) < <D(z) < <D(y). According to 

Lemma 1, x < z < y which contradicts the fact that x <d y. The opposite implication has thus 

been proved by reductio ad absurdum, and the whole proof is completed. 

Lemma 3 

The following equalities hold: 

lim6 t • o 2. Pr[X;(t + Lit) = OIX;(t) = lJ = .:l; 
lit 

lim6 t • o 2. Pr[X;(t + Lit) = llX;(t) = OJ = µ; 
lit 

lim6 t • o Pr[X;(t + Lit) = llX;(t) = lJ = lim6 t • o Pr[X;(t + Lit) = OIX;(t) = OJ = 1 (5) 

It should be noted that the probabilities in the last equality are not divided by L'.t! 
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Proof: The first two equalities are simply definitions of A.; and ~L;, iEJ. For the proof of the 

third one let us note that: 

Pr[X;(t + Lit) = OIX;(t) = 1] = il;Lit + E(Lit) 

Pr[X;(t +Lit)= llX;(t) = OJ = µ;!Jt + E(Lit) 

where E(~t) quickly converges to Oas ~t• O, i.e. 

I. E(M) Q 
lill11t• OM = 

We thus have: 

Pr[X;(t + Lit) = llX;(t) = 1] = 1 - il;Lit - E(Lit) 

Pr[X;(t + Lit) = OIX;(t) = O] = 1 - µ;Lit - E(Lit) 

whence the third equality in (5) follows. 

(6) 

(7) 

(8) 

We can now formulate a theorem which gives the expressions for the transition 

intensities of Z. 

Theorem 1 

Let a,bES, a* b. Then Aa• b > 0 only if a <d b or a >d b, which means that direct transitions 

between a and bare only possible if one directly precedes the other. If a <db then we have: 

(9) 

(10) 
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Proof: The total probability formula and the independence of Xi(t), j EJ yield: 

Pr[Z(t + L\t) = b, Z(t) = a] = 

= L,y <l>(x)=a, <l>(y)=b Pr[X(t + M) = y , X(t) = x] = 

= Lx,y: <l>(x)=a, <l>(y)=b, d(x,y);,2 Pr[X(t + L\t) = y, X(t) = x] + 

+ L x,y: <l>(x)=a, <l>(y)=b, d(x,y)=l Pr[X(t + L\t) = y, X(t) = x] (11) 

As the probability that two or more components change their states in an infinitesimal time 

interval t.t is almost equal to zero, i.e. this probability, divided by L',t, converges to zero as 

t.t • O, we have: 

Pr[Z(t + L\t) = b, Z(t) = a] = 

= E(M) + L,y: <1>(x)=a, <l>(y)=b, d(x,y)=l Pr[X(t + M) = y, X(t) = x ] (12) 

where E(t.t) fulfills (7). In view of Lemma 2 and (2) it holds that Aa• b(t)>O only for a <d b or 

a >d b. The first part of the theorem is this proved . 

Let now a <db. Applying Lemma 1 we transform the sum in (10) as follows : 

Lx,y: <1>(x)=a, <1>(y)=b, d(x,y)=l Pr[X(t + L\t) = y, X(t) = x] = 

= L x,y: <l>(x) = a, <1>(y)=b, x<y, d(x,y)=l Pr[X(t + M) = Y, X(t) = x] = 

= LiEJ L x,y: <l>(x)=a, <l>(y)=b, y,-x,= 1, vj,;i Xj=Yj Pr[X(t + L\t) = Y, X(t) = x ] (13) 

Due to the components' independence we have: 

Pr[X(t + M) = y, X(t) = x] = f1 je; Pr[Xi(t + M) = Yi, Xi(t) = xi] (14) 

The formulas (12) - (14) yield: 
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Pr[Z(t + Lit) = b, Z(t) = aJ = 

= E(Lit) + Lief Pr[X;(t +Lit)= 1, X;(t) = OJ X .J. 

(15) 

where the last equality follows from the definition of 0a• bcrit(i). In an analogous way it is 

proved that for a <db we have 

Pr[Z(t + Lit) = a, Z(t) = bJ = 

= E(Lit) + Lief Pr[X; (t + Lit) = 0, X;(t) = 1J X .J. 

Let us note that for j EJ we have 

From (15) - (17), and Lemma 3 it follows that 

limt.t • a ~ Pr[Z(t + Lit) = b I Z(t) = aJ = 
M 

1 
= Pr[Z(t)=a] Lief µ;q;(t) Lxee~ico Pr[X(t) = x[X;(t) = OJ = 

9 

(16) 

(18) 



and 

limM .... o ~ Pr[Z(t + M) = a I Z(t) = b] = 
l\t 

1 ._, ( Pr[Xi(t)= 1] [ ] = Pr[Z(t)=b] L,ieJ J.,p, t) Lxeng'.:i~(i) Pr[X;(t)= 1] TIJeJ\(i} Pr Xj(t) = Xj = 

1 
= Pr[z(t)=b]Lie1?.,p,(t) Lxeng'.:i~U) Pr[X(t) = xjX,(t) = 1] = 

= Pr[z/t)=b]LieJ?.,p,(t) Pr[X(t) E nf:!;,(i)IX,(t) = 1] = 

(19) 

The proof is thus completed. 

An important conclusion can be drawn from Theorem 1. If cl) is a structure function, 

and the partial order in S is transferred by cl) from {0,1)0 , then Z is a (non-homogenous) 

Markov process with the transition intensities given by (9) and (10). Indeed, it can be easily 

shown that Pr[Z(t)=a], Pr[Z(t)=b], and l,,...b(i), iEJ are functions of p;(t), hence these intensities 

are functions oft, and do not depend on the history of Z before time t. Also, they converge 

to constant values as t • oo, because p;(t) converges to ~L;/(11.;+~L;) as t • oo. Z is thus 

asymptotically homogenous. 

4. A Markov model of a two-mode object. 

A key assumption about the considered system is that its components are independent, i.e. 

the TTF and TTR of any component do not depend on any other component's TTF or TTR. 

Clearly, this assumption may seem doubtful, because a component has to wait for repair if 
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all maintenance teams are busy repairing other 'failed components, in which case the 

dependence of the component's TTR on the TTRs of other components takes place. 

However, if the components' failure rates are very small compared to their repair rates, i.e. 

A;« ~L;, iE I, which is often the case in practice, then the probability that a component fails 

when another component undergoes repair is close to zero. Moreover, if there are at least 

two maintenance teams, then repairs of two (or more) components can be performed 

simultaneously, if (notwithstanding the small failure rates) a component fails while another 

one is under repair. In consequence, the system's functioning can well be described by n 

independent two-state Markov chains, where each chain models the failure-repair process 

of the respective component. Such approach directly leads to the construction of a Markov 

chain with 2" states. Nevertheless, it occurs that in order to model the system's functioning, 

as perceived by a user, the number of states can be greatly reduced. Such models will be 

constructed in this section. In the next section formulas for the transition intensities of the 

respective Markov chains will be derived. 

We begin our considerations regarding multimode systems by analyzing a simple case 

of a two-mode technical system whose normal operation takes place in basic mode. When 

some of its components fail, it can be switched to emergency mode in which its operation 

continues until the failed components are repaired and the system is switched back to basic 

mode, or more component failures cause the system to stop its operation . A detailed model 

of such a system is presented in Fig. x+l in the form of an inter-state transitions diagram. 

The meanings of individual states are given below the figure. This model takes into 

consideration each situation related to the system's bimodality. 

11 



Fig. x+l. The detailed model of a two-mode system's operation - one maintenance team. 

3 - both modes are operable, BM is active (EM has been switched to BM) 

3' - both modes are operable, EM is active 

1- BM is active, EM is under repair 

1' - BM is operable and inactive, EM is under repair 

2 - BM is under repair, EM is active 

2' - BM is under repair, EM is operable and inactive 

0- both modes are failed, BM is under repair, EM is awaiting repair 

0' - both modes are failed, EM is under repair, BM is awaiting repair 

Clearly, the stochastic process illustrated in Fig. x+l has Markov property if the sojourn time 

in each state is exponentially distributed. However, Theorem 1 cannot be applied here, 

because the process's state space is not an image of {0,l}" for any function defined on {0,l}". 

In particular, the transition from 1' to 1, 2' to 2, or 3' to 3 is not an effect of a component's 

state change, but that of switching between basic and emergency modes. 

When there are two or more maintenance teams, then a repair of either mode can 

start immediately after its failure, and the states 0' and 0 can be merged into one state - 0. 
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The resulting diagram is presented in Fig. x+2, and the remark regarding the application of 

Theorem 1 still holds. 

Fig. x+2. The model assuming no waiting times for repairs 

Let us note that the transition chain 3• 2'• 2 is perceived by a system's user as the 

direct transition 3• 2, i.e. from basic to emergency mode. Similarly, the transition chain 

2• 3'• 3 is perceived as the direct transition 2• 3, i.e. from emergency to basic mode. 

Further, the transition chains 0• 1'• 1 and 0• 2'• 2 are perceived as the direct transitions 

0• l and 0• 2 respectively. In consequence, from a user's viewpoint, each of the states 1', 

2', and 3' can be merged with the state 1, 2, or 3, respectively. The resulting diagram is 

shown in Fig. 3. 
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Fig. x+3. The four-state model 

As each transition involves a failure or repair of at least one component, the state space of 

the process illustrated in Fig. x+3 is given by S = ct>({O,l}") = {O, 1, 2, 3), where ct> is the 

respective structure function. The partial order in S, transferred from that in {0,1}", is given 

by the following relations: 0 <d 1, 0 <d 2, 1 <d 3, 2 <d 3. We can thus apply Theorem 1 in order 

to find the inter-state transition intensities. 

Let us note that a user may not distinguish between the states 1 and 3, because in 

both cases the system operates in basic mode, and a transition between 1 and 3 does not 

cause a break in the system's operation, noticeable to a user. Thus our model can be further 

simplified, by merging the state 3 with 1, to the model presented in Fig. x+4. 

Fig. x+4. The three-state model 
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The state space of the process illustrated in Fig. x+4 is given by S = <l>{{0,1}") = {O, 1, 2), where 

Cl> is the respective structure function. The partial order in S, transferred from that in (0,1}", 

is given by the following relations: 0 <d 1, 0 <d 2, 2 <d 1. Thus, as in the previous case, we can 

apply Theorem 1 in order to find the inter-state transition intensities, which will be done in 

the next section. 

We conclude this chapter with a remark relevant to possible applications of the 

presented model. It can be assumed that switching between basic and emergency modes is 

done instantly, i.e. times of transitions 1'• 1, 2'• 2, and 3'• 3 are much shorter than the 

remaining transition times. Thus, in the three-state model, the transitions 1• 2 and 2• 1 are 

associated with short breaks in the system operation. In turn, the sojourn in state O is 

perceived as a long break, because it involves restoring and activating basic or emergency 

mode. 

5. Formulas for the transition intensities of a three-state system 

In this section let Z be the three-state process illustrated in Fig. x+4. We will now 

derive formulas for the transition intensities of Z. This task will be made easier by using the 

intensities of transitions of two-state processes obtained from Z by aggregating the states 

0+2 or 1+2. For simpler notation, we will omit the variable t where no confusion arises. 

These intensities are defined as follows: 

A1 • o+2Ct) = limu • O ~ Pr[Z(t + u) E (0,2}JZ(t) = 1] u 

A0+2 • 1 (t) = limu• o ~ Pr[Z(t + u) = lJZ(t) E (0,2}] 
u 

A1+ 2 • 0 (t) = limu • o ~ Pr[Z(t + u) = 0JZ(t) E (0,2}] 
u 

Ao • 1+2(t) = limu • o ~ Pr[Z(t + u) E (1,2}[Z(t) = 0] 
u 

(20) 
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where+ is the aggregation operator. The definition of a component's importance to an inter-

state transition yields: 

(21) 

where iEJ, and P1+2(t) = Pr[Z(t) E{l,2)] = P1(t)+P2(t) . From (9) and (10) we obtain: 

(22) 

The transition intensities of Z will be expressed using those defined by (22), and the 

importances 11.,.2(i), iEJ. However, the latter are not given by formulas as simple as (21). This 

is due to the fact that Z is not a two-state process, and the event {<l>(x;, iEJ)=l provided that 

x;=l} may not include the event {<l>(x;, iEl)=l provided that x;=O}. A method to compute 

11.,.2(i), iEJ will be presented in the next section. 

As O <d 1, from (9) and (10) we get: 

(23) 

From (20) and the law of total probability it follows that: 

(24) 

The equalities (24) yield: 

(25) 
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and 

(26) 

It now remains to compute A2 • 0 and Ao• z· By the same argument as just used we obtain: 

(27) 

The equalities (27) yield: 

(28) 

and 

(29) 

As can be seen, all transition intensities of Z are expressed by P1(t), P2(t), and 11...,2(i,t), iEJ, which, in 

turn, are functions of p;(t), iEJ. Z is thus a Markov chain with time-dependent transition intensities. 

As follows from (4), each p1(t): iEJ converges to µ;/(A.1+µ;) as t• co, hence each Aa• b(t): a,bE{O, 1, 2) 

converges to a constant value. In consequence, Z is asymptotically homogenous. 

A method to find P1(t), P2(t), and 11...,0(i,t), iEJ, which have to be known in order to use the 

formulas (23), (25) - (26), and (28) - (29), is presented in Section 6. 

6. Computing P1~, and 11...,n(i) for an exemplary system 

As can be expected, the method to compute the' state probabilities P1 and P2, and the 

importances 11...,0(i), iEJ is based on analyzing the system's RBD. This method will be 

illustrated on the exemplary system whose RBD is shown in Fig. 1. 

We will first find the formulas for P1 and P2. Let us note that the events {x7=0}, 

and 

{x7=1, ... , x5=1, x6=1} are disjoint and exhaustive. From the law of total probability and the 

rules for computing the reliabilities of series-parallel systems, we obtain: 

17 



P1+2 = [ q1(P1P3P4 V Pz)PsP6 + P1q3(P2PsP6) + 

+ p7p3q4(p1 V PzPsP6) + P1P3p4qs(P1) + 

+ p7p3p4p5q6(P1 V Pz) + P1P3P4PSP6(P1 V Pz)] · Pa (30) 

Reversing the order of components in the first "Boolean" sum, and transforming all the 

"Boolean" sums using the definition of the operator v, we obtain: 

P1+2 = [ q7(pz + qzp1p3p4)PsP6 + p7q3pzPsP6 + 

+ p7p3q4(p1 + q1P2PsP6) + p7p3p4qsP1 + 

From (31) and the RBD in Fig. 1 it follows that: 

P1 = [p7p3q4(p1) + p7p3p4qsP1 + 

+ p7p3p4ps(P1 + q1P2)] · Pa 

P2 = [ q7(pz + qzp1p3p4)PsP6 + p7q3pzPsP6 + 

+ p7p3q4q1P2PsP6] · Pa 

(31) 

(32) 

(33) 

We now pass to the computation of 11...,2(i). As 2 <d 1, transitions from 2 to 1 are 

triggered by components' repairs. From the RBD in Fig. 1 it can be seen that (1,3,7,8) and 

(2,5,4,3,7,8) are the basic minimal path-sets, and (2,5,6,8) and (1,3,4,5,6,8) are the 

emergency minimal path-sets. Let us note that if iE{5,6,8} then e; belongs to the both 

emergency path-sets, which means that <l>(x) ct,. 2 if x;=O. In consequence 0 2• i'';1(i) = 0, and 

11,_.z(i) = O; i = 5,6,8 (34) 

For iE{l,2,3,4,7} the formula for 11...,2(i) is obtained by first selecting those 

components in the expression for P2, which contain the variable q;. Each vector x such that 
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x;=O (e; is failed) and cD(x)=2 (the system's state is 2) corresponds to one such component. 

Then for each selected component it is checked if the repair of e; "opens" at least one basic 

path, all of which are "closed" before e;'s repair. If so, the component (after the removal of 

the variable q;, and a possible further modification) is added to the expression for 11,..di). 

Clearly, in order to obtain this expression, the variable q; has to be deleted from each 

selected component of P2, as 11,.,di) is a conditional probability provided that x;=O. For i=l 

the selected component is p7p3q4q1p2p5p6p8. As it contains the variables p3, p7, and Pa, the 

repair of e1 opens the basic path {1,3, 7,8}, hence 

(35) 

For i=2 the selected component is q7q2P1P3P4PsP6Pa- However, the repair of e2 does not open 

any basic path due to the presence of q7 in the analyzed component, hence 

(36) 

For i=3 the selected component is p7q3p2PsP6Pa- The repair of e3 opens (1,3,7,8) provided 

that e1 is operable, or (2,5,4,3, 7,8) provided that e4 is operable. We thus have 

(37) 

For i=4 the selected component is p7p3q4q1P2PsP6p8. The repair of e4 opens (2,5,4,3,7,8) 

(note that it cannot open (1,3, 7,8) due to the presence of q1), hence 

(38) 

For i=7 the selected components are is q7P2PsP6Ps and q7q2p1p3p4p5p6p8 . In case of the first 

component, the repair of e7 opens (1,3, 7,8) if e1 and e3 are operable, or (2,5,4,3, 7,8) if e3 and 

e4 are operable. In case of the second component the repair of e7 only opens (1,3,7,8) (due 

to the presence of q2). In consequence 
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(39) 

7. Conclusion 

A method to compute the state probabilities and inter-state transition intensities for a 

complex system operating according to a three-state Markov model has been presented. 

This method, appropriately modified, can be applied to a broad spectrum of Markov­

modeled multi-state systems. In particular, the systems that fulfill the assumptions of 

Theorem 1 are eligible. The computation of state probabilities and transition importances 

was presented in section 6 for the exemplary system, but it can easily be generalized to any 

system whose each path-set (obtained from its RBD) corresponds to one of the system's 

modes of operations (or states). 

The key reliability parameters, i.e. the inter-state transition intensities can be used to 

obtain other characteristics of the system's behavior. This will now be shown for a three­

state system considered in Sections S and 6. Let us adopt the following definitions: 

La -the mean sojourn time in the state a, aE{0,1,2} 

Na• b(u) - the mean number of times the system changes its state from a to bin a time 

interval of length u. 

N10"g(u) - the average number of long brakes in the system's operation, resulting from 

failures of the both modes 

N'h0 ''(u) - the average number of short breaks in the system's operation, caused by 

switching between the both modes 

By the argument similar to that used in (7] it can be shown that 

La = (LbE(0,1,2),b,ea Aa• b 
)
-1 
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(41) 

(42) 

(43) 

The above defined characteristics are particularly important for the reliability analysis of 

power distribution networks. 
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