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Abstract 

In this paper we propose a method to derive classification rules that correctly 

describe all the examples belonging to a class and do not describe all the examples not 

belonging to this class. The method bases on an evolutionary algorithm with dedicated to 

that problem specialized operators and a method of valuing their behavior. The new 

concept of the proposed method is that every solution obtained from the algorithm ( every 

member of the population in the evolutionary algorithm) contains rules which describe all 

classes of the training data. So it is a complete solution that covers all the examples 

presented to the algorithm. The results are very encouraging. 

Keywords: Learning from examples, evolutionary algorithm (EA), genetic 

algorithm, heuristic operators, adaptive evolutionary algorithm. 

1 Introduction 

Machine learning from examples is a process of inferring a classification rule of a 

class from descriptions of some individual elements of the class called positive examples, 

with some elements from outside of the class, called negative examples, which are used for 

narrowing the solution space. 

In practice, due to imperfect data and other elements of the process, the requirements 

to be satisfied by learning procedures are: 



• a completeness, i.e. that the classification rule must correctly describe all the positive 

examples; 

• a consistency, i.e. that the classification rule must describe none of the negative 

examples; 

• convergence, i.e. the classification rule must be derived in afinite number of steps; 

• the classification rule of minimal "length" is to be found, e.g. with the minimum 

number of attributes ( or, more generally being "simple"). 

The sense of the first three is quite natura!, and the sense of the fourth reflects an 

obvious fact that long rules are not "legible" to the humans, hence their practical usefulness 

may be limited. 

Examples are described [cf. Michalski, 1983] by a set of K "attribute - value" pairs 

K 
written as e = "[a1#v1 ], where a1 denotes attribute j with value v1 and # is a relation 

J=I 

exemplified by=,<,>,=,~. etc. 

For instance, if the attributes are: height, color_of_hair, color_of_eyes, than the 

concept "look of a one men" may be described by 

[height ="high"]" [color _of_hair ="blond"]" [color _of_eyes = "blue"]. 

We propose here a procedure based on the specialized evolutionary algorithm which 

derives classification rules directly from training data. The requirements1 of the problem, 

denoted above, lead to the idea that the whole set of rules for all classes of data can be 

treated as a solution of the evolutionary algorithm, than can extract them from the set of 

training data. The simplest way to check the correctness or not of that idea is to apply the 

algorithm, which can be easily adopted to solve the problem. During conducted tests it 

1 There is a problem with a convergence of EA, which theoretically requires an infinite number of 

iterations, but in practical cases the number of them is not so high. 
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turned out that word „easily" is not proper in that situation, but obtained results are very 

promisive and proved that it was good idea to prepare more sophisticated, specialized 

evolutionary algorithm for that problem. Our modifications to the evolutionary algorithm 

included: 

• specialized data structure with dynamically allocated number ofrules; 

• specialized set of genetic operators with I O elements; 

• a method of valuing and choosing operators for modification of solutions; 

• controlled method of selection individuals to the next generation. 

Fitness function is also a specialized element of used EA, but it is rather common fact that 

it depends on the solved problem. 

The paper is organized as follows. In Section 2 the inductive learning problem is 

represented. In Section 3 the EA algorithm is described. We will test the method proposed 

in this paper on the thyroid cancer problem. In Section 4 computation results are given. 

2 Problem formulation of inductive learning from examples 

Suppose that we have a finite set of exarnples U and a finite set of attributes 

A= {a 1 , .. ,,ad, V01 ={v~1, ... ,v~'} is a domain of the attribute a1 , j=l, ... ,K, 

V= _U V01 • f:UxA • V is a total function such that f(e,a1 )eV01 for Va1 eA, 
1-l, . 0 K 

V e e U, called an informational function. 

Each example ee U is described by K attributes, A= {a1, ... ,aK} and is represented 

by 

K 

e = "[a = v~'] 
J=I ) I 

(2.1) 
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where v;1 =f(e,a1 ), v;1 eV01 ,denotesthej-thattribute a1 takingonavalue v;1 for 

example e. An example e in (2.1) is composed of K "attribute-value" pairs (selectors), 

denoted s1 = [a1 = v;1 ]. Conjunction of I~ K "attribute-value" pairs, i.e. 

C1 = A s1 = A [a1. = v;1] = [a1 = v? ]A •.• A [a1 = v?] 
Je/ Je/ ' 1 

(2.2) 

where I c {I, ... , K}, card(l) = l is called a complex. 

Suppose now that we have example e [cf. (2.1)] and we consider a complex [cf. 

(2.2)] C1 = [a1, = v? ]A .. .A[a1, = v?] that corresponds to the set of indices 

I={j1, ... ,j1} c:{1, ... ,K}; the set of indices U1>· ·-,j1} is clearly equivalent to a vector 

x=[xif, j=l, ... ,K,suchthat xi=I ifaselector s1 =[a1 =v;1 J occursinthecomplex 

C1 , and O otherwise. 

For instance, for K = 3 and example e = [height = "high"] " [color_of_hair = 

"blond"] " tcolor_of_eyes = "blue"], the vector [0,1,0]T is equivalent to the complex 

[color_of_hair = "blond"]; the complex [height = ''high"] is equivalent to the vector 

[J,O,Of. 

A complex c1 covers an example e if all the conditions on attributes given as 

selectors are covered by (equal to) the values of the respective attributes in the example, i.e. 

f(C 1 ,a1) = f(e,a1), 'tj EJ. For instance, for K=3 the complex [ a1 = "woman"]" [ a3 = "35 

years"] covers the example [ a1 = "woman"] " [ a2 = "marńed"] " [ a3 = "35 years"] but does 

not cover the example [ a1 = "man"] " [ a2 = "married"] " [ a3 = "35 years"]. 

We assume that ad is a decision attribute, V0 , = {v;,', ... , v~'} is a domain of ad and 

we have a set of attributes {a1,a2, ... ,aK}u{ad}. Let us observe that the attribute ad 

deterrnines a partition of the set U, where 
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Y,, ={ee U: f(e,ad)=v?}, 
V11 I 

v"' EV 
1, a" for t = l, ... d, and Y ,, V ... V Y ,, =U, 

v11 Vl,I 

Y ,, 11 Y ., = 0 for i ,,,_ i . The set Y ., is called the t-th decision class. 
V1 V} V11 

Let us class Y ., for v:d E V0 • Suppose that we have a set ofpositive examples: 
v11 1 d 

(2.3) 

and a set of negative examples: 

An implication IF C1 THEN [ ad = v?] is called a "elementary rule" for the class 

Y ., , where C1 is description of example in terms of conditions attributes a,, j e / and this ,,, 

example belongs to the class Y ., . ,,, 

In this paper we consider the classification rules to be the disjunction ( via '\.J'') of 

"elementary rules" consisting of complexes of type (2.2), i.e. 

IF c'• u ... uc" = THEN [ ad = v:,d ] (2.5) 

where /1, ••. ,IL c{I, ... ,K), C 11 = ." [a1 = v;1 ], I= l, ... ,L and "u" corresponds to the 
;e/1 

connective "or". 

3. Evolutionary algorithm in the problem of discovering classification rules 

In spite of its universality, the evolutionary algorithm should be adjusted to solve the 

raised problem in order to get best results quite fast. Unchanged remains only the core idea 

of its work: thanks to small random changes in genotypes of population members 

(mutation), the recombination of genes and the selection of the best individuals, the 
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population develops towards better values of the problem's goal function. It is shown in 

Fig 3 .1. The adjustment of the genetic algorithm to the solved problem requires a proper 

encoding2 of solutions and an invention of specialized genetic operators for that problem 

and accepted data structure. 

1. Random initialization of the population of solutions. 

2. Reproduction and modification of solutions using genetic operators. 

3. Valuation of the obtained solutions. 

4. Selection of individuals for the next generation. 

5. If a stop condition not satisfied, go to 2. 

Fig. 3. I.The evolutionary algorithm. 

3.1 A mem ber of the population of solutions data structure description 

In the case of decision rules, the who le information about the actual solution is stored 

as a set of rules (with possible variable number of them), which describe all classes of data 

in the solved problem. So every member of the population has its own set of rules, which 

describe, as good as possible, the training data (Fig. 3. 2). 

The rule (Fig. 3. 3) consists ofa sequence of(integer) values for its decisive variables 

(value O means „don't care" in our approach) and its conclusion (which is a number of one 

of the class of the labeled training data). These numbers are treated as symbols rather than 

real values and it is important for the algorithm to know how many symbols it is possible 

to use for every decisive variable of a rule. Also some additional information about the rule 

is bounded with it: a number of well classified data, a number of wrong classifications and 

a list of numbers of wrong classified data (this information is required by some genetic 

operators ). 

2 Applying a binary coding, which was not long ago treated as a base of evolutionary algorithms, is not 

very useful for this problem and nowadays is used only when .it is easy and helpful to apply it. 
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A number of rules 

A number of a genetic operator 
chosen for current iteration 

A vector of qualities of 
genetic operators 

Rule 1 

Rule2 

Rule 3 

Rule 4 

Fig. 3. 2. A member of the population of solutions. 

A vector ofvalues of decisive varibles 

A conclusion of a rule 

Arnie A nwnber of good classifications 

A nwnber of bad classifications 

A list ofbadly classified data 

Fig. 3. 3. A rule. 

Beside it, the member of the population contains severa) more data including: the 

number of rules (some genetic operators modify the number of rules), a vector of real 

numbers, which describe its knowledge about genetic operators and a number of the chosen 

operator for current iteration (the meaning of those values will be described later in this 

chapter). 
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3.2 Fitness function 

The problem's quality function is closely connected with the fitness function, which 

values the members of the population - solutions of the problem. In the problem of 

discovering decisive rules, the fitness function is rather an algorithm than a mathematic 

formula (3.1). 

where: 

Fk - a fitness function of the sol uti on k; 

n_ruk - number of rules in the currently valued solution k; 

n_da - number of the training data in the solved problem; 

n_nzk - number of non-zero values of decisive variables from all rules of the solution k; 

a, f3 - small coefficients of proportionality; 

c;i - a value of the rule i from the datumj, obtained from a simple algorithm: 

if (attributes_of_datum[j] match3 rule[i]) 

if(conclusion_of_rule[i] ==label_of_datum[j]) 

if(flag[j]=O) {cij=l; flag[j]=l;} else c;i=O; 

else Cij=-1; 

(3.1) 

For every rule of the valued solution the whole set of labeled training data is 

presented. If a daturo obeys the rule, the rule gets one point unless that daturo has been 

3 ,,Match" means thai values of attributes are the same or O. 
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fixed by earlier valued rule 4, in that case it gets no prize. If the rule says nothing about the 

datum, its score is unchanged. If it fails it loses one point, regardless the flag of the actually 

checked datum. Additionally rules are valued in random order (not according to their 

numbers as it is shown on Fig. 3. 2) to avoid situations, where rules which are covered by 

others exist only because they are earli er on the list of rules of the valued solution. 

The fitness function for the solution is a sum of points got by its rules minus a small 

value proportional to the number of rules and the number of non-zero values of decisive 

variables in every rule. Parameters a and f3 have been tuned „manually" but their values 

depend rather on the used evolutionary algorithm (selection method) than parameters of 

solved problem. In conducted tests, results for a=0.01, {J=0.001 and a=0.001, {J=0.0001 

were similar and accepted values were valid for all tested problems. Also applying only 

parameter a or only f3 gave worse results. 

The main aim of the evolutionary algorithm is to maximize the formula (3. 1). Better 

solutions cover mare training data and are shorter and sirnpler than worse. Ideally the 

evolutionary algorithm should produce the simplest solutions with properly classified all 

training data. For such solutions their fitness function should be very close to the size of 

the training data set. This is why such an „artificial" manner of valuing rules is used - it is 

easy to determine whatever all training data are properly classified. 

3.3 Specialized operators 

The described data structure requires specialized genetic operators, which modify the 

4 Every datum has a flag which shows if it was correctly classified by some rule or not. Only the first 

correct c!assification sets the flag and the rule responsible for il gets one point. This model prevents the 

situation, where the fitness function increases without any limits due to multiple classification of the same 

data. 

9 



population of solutions. Simple random operators are easy to think out, and similar to the 

widely used: 

• mutation - random change one value to another from the set ofpossible values (it works 

on conditions an conclusions); 

• crossover - an exchange ofrandomly found rules between individuals. 

Also other „blind" but problem specific operators can be easily developed: 

• adding a new rule with randomly chosen values ofparameters; 

• deleting a randomly chosen rule; 

• mutation Il - randornly chooses a condition an inserts O instead of its previous value 

(often leads to simpler rules). 

Simulations of the evolutionary algorithm with „blind" operators proved that 

some more sophisticated, enriched with some heuristics should be used. Random operators 

have big difficulties to find a set of rules that covers all the training data. That' s why a list 

of heuristic operators was worked out and successfully tested: 

• adding an unclassified data as a new rule; 

• deleting rules with no properly classified data or with long lists of wrong classifications 

(simplifies obtained solutions). An example: 

Rule 1 

Rule2 

Rule3 
Rule4 

l 
o 
2 
o 

2 2 
2 3 
o I 
o 3 

o va/1=2 • Rule l j l I 2 I 2 I O I 
I va/2=0 • deleted 
l va/3=5 • Rule2 j~2~1-0~I-I~!-I~I 

o deleted 

j =n_da 

The symbol val; is a part of fitness function and may be described as val; = ~::Cii (all 
j =I 

symbols like in formula 3.1). 

• connecting similar rules (with the same conclusions and similar conditions) with adding 

O on positions which are different. An example: 
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• breaking rules which have several bad classifications and many good (subtraction of bad 

data, basing on logical transformations ofrules). An example: 

Bad data I I I 2 I 3 I 3 I 
Rule 1 I 1 I 2 I 2 I O I 

j, 

:~~ 11:. I ! I ; I ; I ~ I 
It is assumed that possible values of attribute 4 are: O (don't care), I, 2, 3 and label of 

„Bad data" was different than conclusion of „Rule i". 

• aggressive breaking rules - an operator which consists of previously described version 

of breaking operator, a function which values rules (similar to fitness function) and the 

deletion of wrong or poor classificators. This group of operators works together in a 

loop until it has nothing to do - very powerful operator which speeds up the process of 

covering all testing data. 

4.4 Evolutionary algorithm used to solve the problem 

Using such a big number of genetic operators requires applying some method of 

sampling them in all iterations of the algońthm. In the used approach (based on works 

[Mulawka and Stańczak 1999], [Stańczak 1999] and [Stańczak 2000]) it is assumed that an 

operator that generates good results should have bigger probability and more frequently 

effect the population. But it is very likely that the operator, that is good for one individual, 

gives worse effects for another, for instance because of its location in the domain of 

possible solutions. So every individual may have its own preferences. Every individual has 

a vector of floating point numbers - q (beside encoded solution). Each number corresponds 

to one genetic operation. It is a measure of quality of the genetic operator. The higher the 

number is, the higher is the probability of the operator. This relationship may be written as 

follows : 

li 



(3.2) 

where: 

q;jt) - a quality coefficient of the i-th operation in the moment t for j-th member of 

population; 

pu(t) - a probability of an appearance of the i-th operation in the moment t for j-th member 

of population; 

L(t) - a number of genetic operators (may vary during genetic computations). 

This ranking becomes a base to compute the probabilities of appearance and 

execution of genetic operators. This set of probabilities is also a base of experience of 

every individual and according to it, an operator is chosen in each epoch of the algorithm. 

Due to the gathered experience one can maximize chances of its offspring to survive. The 

quality factors are computed according to the formula (3.3): 

where: 

q;j(t+ 1 ), qij(t) - a quality of i-th operation for j-th individual in following generations; 

ąou(t) - a credit value, which can be modified during iterations; 

(3.3) 

x1;(t;5 - an improvement of the problem's quality function, obtained by i-th operation for j­

th member of population. In the case of Jack of the improvement equal to zero, 

5 In the work (Stańczak 1999] the improvement of the problem's goal function is normalized to value 

between O and I, but in the solved problem it is unnecessary, because values ofmembership functions belong 

to this interval. 
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Xj,{t)=Qlt) - Q(t-1) (maximization), Qj(t) - solution of j-th individual, Q(t-1) - the 

global best sol uti on, found till the moment t-1; 

a(t) - a coefficient of forgetting, a E (O, 1), its value also can be adjusted during 

evolutionary process6; 

l - an index of the operator chosen for modification of the particular solution. 

The first element of the formula (3.3) - q0(t) plays a role of credit - a small value, 

which supports small level of qij even if the operator does not give any advantages for a 

long term. Dropping this value to zero would eliminate corresponding to it operation for 

current individual and for its possible offspring. This fact is not profitable, because it is 

possible that they will work better on other stages of the evolution process. For exploring 

operators Iike mutation it is often necessary to Jet them work even without any visible 

improvements of the fitness function (as it can be noticed later from the presented 

simulation results ). 

The second addend is an improvement of the problem's quality function in the 

current generation or zero when no improvement is achieved. 

The third part of the formula (3.3) remembers old achievements of an operator 

multiplied by forgetting factor a(t). It is responsible for balancing influence the quality 

factor of old and new improvements of the operator. Decreasing the value worked out by 

an operator is introduced to make the evolutionary algorithms more flexible. It should be 

noticed that some genetic operators may achieve good results in some phase of simulation, 

and then draw out their abilities, but others, probably better in next phases, would have 

small probabilities of appearance, so it would take a lot of time to change this situation. 

The effect of forgetting former achievement can overcome this problem. When operators 

6 The case with adjusted valucs of a,/t) and q0it) is shown in the paper [Stanczak 2000]. 
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don't change the global best solution for some time, the probabilities of operators become 

equal. After every generation only bounded with the chosen operator value ąy(t+ 1) is 

updated, the others remain unchanged. Only one operator is executed in one generation for 

one individual, so there is no reason to change coordinates corresponding to the other, not 

selected operators. 

3 5. Controlled selection 

The applied selection method consists of two methods with different properties: a 

histogram selection (increases the diversity of the population) and a deterministic roulette 

(strongly promotes best individuals) [Stanczak 1999], which are selected in random during 

the execution of the algorithm. The probability of executing of the selection method is 

obtained from the method shown on Fig. 4. 4. 

l. If 3*o(F) < max<Fmean - Fmin, Fmax - Fmean) then Phis = Prus - a*pc1e1; 

2. lf 0,5*cr(F) > max(Fmean- Fmin, Fmax - Fmean) then Phis = Phis*(l + a); 

3. If 0,5*o(F) ~ max(Fmean - Fmin, Fmax - Fm,an) ~ 3*s(F) then Phi•= Pbis *(0,5-pc10J*a; 

Fig. 4. 4. The algorithm of automatic tuning probabilities of the mixed selection elements 

The symbols used in Fig. 4.4 are: Phis - probability of histogram selection appearance, 

Pdet - probability of deterministic roulette, Fm,am Fmim Fmax - average, minimal and maxima) 

values of fitness function in the population. 

If individuals in the population are described by too small standard deviation of the 

fitness function (a(F)) with respect to the extent of this function (max(Fm,an- Fmin• Fmax­

F,.,a,J), then it is desirable to increase the probability of appearance of the histogram 

selection. On the contrary the probability of the deterministic roulette selection can be 

increased. As far as parameters of the population are located in some range, considered as 

profitable we may keep approximately the same probabilities of appearance for both 

methods of selection. lt is important that always Ph;,+Pdet= 1- it means that some method of 
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selection must be executed. 

4. Application of the EA algorithm to solve a thyroid can cer problem 

The medical data set published by Nakache and Asselian have been collected on 

patients with thyroid cancer at Hospital Ambroise Pare, from 1960 to 1980. They concern 

281 patients, all submitted to a surgical treatment. The time of analysis has been fixed in 

July 1981. At that time, the patient is dead or alive. The survival time is then fully known 

for those patients who have died before the time of analysis. For those who are stili alive, 

we only know the inferior limit of their survival time. Patients who survive may be 

completely cured and their survival pattern might have no relationship to those who died. 

Each patient was described by the following 12 attributes in a discrete coding: 

a1 : sex, {male, female} 

a1 : age, {<40, 40-60, 60-70, > 70} 

a 1 : histology, {well differentiated, poorly differentiated} 

a, : metastasis, {yes, no} 

a5 : enlargement, {uni-lobe, uni-lobe+isthm, all the thyroid} 

a6 : clinical lymph nodes, {yes, no} 

a7 : clinical aspect, {unique nodule, multi nodules, important enlargement} 

a8 : pathological lymph nodes, {yes, no} 

a9 : compressive syndromes, {yes, no} 

a10 : invasion, {no, small, average, large} 

a 11 : survival time, {in months }, length in month of survival time from the entrance in 

the study (between I 960 and I 980) to the time of analysis, 

a 11 : survival, {survivor, non survivor at time of analysis }. 
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Two of the 12 attributes are important: survival time (in month) of a patient at the 

time of analysis, and survival or non survival at the time of analysis. The aim of such a 

study is to identify prognostic elements of disease evolution and to define a prognostic rule 

for a new case coming from the same population and being in the same conditions. The 

class attribute is the survival time. The patients (training examples) have been divided into 

two classes: 

class I: the patients will be alive over 7 years, 

class 2: the patient will be dead during 7 years. 

The first class includes patients with the survival time over 7 years. The patients with 

the survival time below 7 years belong to the second class. The problem of learning from 

examples is formulated as to find two classification rules [Nakache 1983] : 

IF R(: THEN [ survival time = over 7 years] 

IF R~' THEN [survival time= below7 years] 

using all examples as patterns. The R; and Rr are specified by "elementary" 

conditions depending on the attributes. We assume, that the classification rules for 

elements belonging to class I, I= 1,2, must correctly describe all the examples. The 

measure of classification accuracy Ai,am;ng is the ratio of examples correctly classified to 

the class I ( or class 2) to the total number of examples, in percent. The ratio of correct 

classification decisions to the total number of decisions made was taken as the measure of 

classification accuracy, in percentage. 

The rough set theory, introduced by Z. Pawlak is here chosen as a tool to selection of 

a set of the most important attributes. A reduct of attributes is the minimal subset of 

attributes ensuring the same quality of the classification as the complete set of attributes; a 

core is an intersection of all reducts in the information system. 
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All classes are definable, i.e. precisely characterized by ten attributes. First, we 

looked for the core of attributes, and then we computed all reducts. The core is composed 

ofthree attributes: a2 : age, a4 : metastasis and aj: enlargement. We found seven following 

aj, a7 , a9 , a10 } . Let us notice that attribute a6 does not occur in any of reducts. Then we 

performed the analysis of frequency of the attributes in all reduct. The distribution of the 

attributes is presented in Table 4.1. 

Attribute 

Number of reducts 373770234 6 

Tab. 4.1. The frequent attributes in chosen reducts. 

The attributes a 2 , a 4 , aj , a 10 occur in all reducts more frequent than other attributes, 

therefore, they are the most important attributes in system. 

The EA method [Stańczak, 2000], method IP2_GRE with elements of greedy 

algorithm [Kacprzyk and Szkatuła, 1999, 2000] and method IP2_RS with elements of the 

rough set theory were applied to the data described above. We assume that the 

classification rules must correctly describe all training examples, Ai,amtng = 100 %, by 

assumption. The results of applying this methods to medical data are presented and 

described below. 

Algorithm Number of iterations Number of selectors in 
rule 

IP2 RS 4 12 
IP2 GRE 3 11 

EA 3 9 

Tab. 4. 2. Some parameters describing the process of finding a classification rule for the class 1. 
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Algorithm Number of iterations Number of selectors in rule 

IP2 RS 5 9 
IP2 GRE 8 15 

EA 5 9 

Tab. 4.3. Some parameters describing the process of finding a classification role for the class 2 

As can be seen, the shortest classification rules were obtained by using the method 

EA. A classification rule for the first and the second class (by using the EA method) are 

presented below. Each rule is additionally described by the number of covered objects. 

IF [ metastasis = no] A [ enlargement = uni-lobe] A [invasion = no] THEN 

[survival time= over 7 years] : IO; 

IF [age<40] A [compressive syndrom= no] A [invasion = no] THEN 

[survival time= over 7 years] : 3; 

IF [metastasis = no] A 'fpathological lymph nodes= no] A [ compressive syndrom = no] 

THEN [survival time= over 7 years] : 35; 

IF [invasion = large] THEN [survival time= below 7 years] : 5; 

IF [ metastasis = yes] THEN [survival time= below 7 years] : 11; 

IF [ enlargement = uni-lobe+ isthm] A [ clinical aspect = multi nodules] THEN 

[survival time= below 7 years] : 4; 

IF [age E 40-60] A [enlargement = uni-lobe] A [invasion = average] THEN 

[ survival time = over 7 years] : 1. 

5. Concluding Remarks 

We have presented an procedure EA to derive classification rules from sets of 

positive and negative examples. The computational results are very encouraging and give a 

strong impulse for further investigations on a hybrid method which can deal with 

imperfect data or with not precisely described classes of data. 
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