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ABSTRACT. The wavelet transform is one of the well-known tools, tIBed for signal processing 
and modclJing, and being applied to various types of data. In this paper, a wavelet model is 
introduced to describe the wind velocity and gusts of wind. The anaJysis is concentrated on 
the discrete wavelet transform, based on the Haar and Daubechies wavelets. The goal is to 
approximate the data by wavelets as well as to 'dcnoise' them by thresholding. 

l. INTRODUCTION 

Wavelet transform is one of the well-known and widely used tools for signal analysis. Partic­
ularly noteworthy is the discrete wavelet transform, - a computationary effici ent technique to 
analyze non-stationary data. One of the reasons wavelets have been successful in many fields, 
such as image compression is their ability to effici ently represent all manner of complicated sig­
nals. Wavelets arc particu larly effective at representing signals with discontinuities , due to their 
excellent localization properties. In this paper we conduct a multiresolution analysis of the data 
on wind velocity and gusts of wind, using wavelet representation. The idea of using wavelets to 
describe physical phenomena, like wind is nothing new. The methods of wavelet transform have 
already been used e.g. in [lj, [2] . 

In general, wavelets are functions satisfying certain requirements . The name comes from the 
fact that , they should integrate to zero, waving above and below the x-axis. There are many 
kinds of wavelets - smooth , compactly supported , given by simple mathematical expressions , 
having simple associated filters, etc. The details on the wavelets theory can be found e.g in [6], 
[3], we will only shorty recall some facts , concerning the wavelet transform, in particular the 
discrete wavelet transform. 

Consider a function ·¢(·) E .C2 (IR) , such that JR ·,j, (x) dx = 0 and let dilations and translations 
of the function ,J, ( ·) be given by 

(1) 'P;,k(x) = r½.,;,(rix - k) , for j, k E Z, where x E IR. 

The function ·¢( ·) is called a wavelet ( or a mother wavelet) , when the family {·¢;,k ( ·)} j,kEZ forms 
an orthonormal basis on .C2 (IR) , the vector space of measurable, square integrable functions of 
a single variable. The dilation parameter j controls the scale (or size) of the wavelet and the 
translation parameter k controls the location of the wavelet. It is easy to observe that, scale 

factor 2½ normalizes the wavelet basis element 'lfj,k, for j , k E Z, so that 111;,kll = 11111 , where 
the norm II · II is generated by the inner product < ·, · >. In the wavelet transform, given a 
function f , we want to approximate that function in terrns of the wavelet basis (1) , i.e. 

(2) f(x) = LLd;,k·¢;,dx), j,k E Z, 
j k 

where d;,k, j, k E Z are the wavelet coefficients. 
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A simple example of a wavelet basis is the Haar basis , generated from the mother wavelet 
(called the Haar wavelet) 

(3) {
1, if x E [O , ½l, 

cj,(x) = -1, if x E [½ , 1), 

0, otherwise, 

illustrated in Fig.1.1. It is easy to check that the wavelets derived from the mother Haar wavelet 
form an orthonormal basis, by observing that (see [5]): 

• wavelets with different translate nnmbers k, but on the same scale j do not have inter­
secting supports , 

• wavelets on different scales j either have non-intersecting supports or, one wavelet takes 
the value -C and then Cover a set where the other wavelet is constant (for some C), 

• < ·,t,1,k , 'c/Jj,k >= 1, for all j , k. 

Wavelet Pictu~ (Enhanced) 

Fig.1.1 Haar wavelet ·,t,(x), given by (3). 

There are also many other families of wavelets, arising form mother wavelets more regular 
than the Haar function (3). One should mention two families of Daubechies wavelets (see [5] or 
[4]) , namely the extremal phase or least-asymmetric wavelets. The wavelets in each of these have 
compact support. Moreover , indexing each mother wavelet in a family by N , the regularity of 
the mother wavelet (and hence all the derived wavelets) is proportional to N, i.e. if N increases , 
they become smoother. 

1.1. Data on wind velocity and gusts of wind. The data set to be analyzed provides the 
information on various properties of wind, such as the measurements of wind velocity, direction, 
gusts of wind etc., collected between the 1st and the 4th Jan, 2011. The measurements were 
performed every 9 minutes, starting at midnight 1st of Jan, and ending with 23.40, 4th of 
January, 2011. The goal of the paper is to find a wavelet model for two data sets - on wind 
velocity and gusts of wind. 

1.2. Haar wavelets on functions. Given two data sets that , need to be analyzed , we arc 
interested in wavelet representations of functions generated by (finite) data sets , in particular 
on (0, lj. 

Let y = (y1, Y2, ... , Yn) be a data vector, such that Yi E JR , for i = 1, ... , n. Assume that 
n = 2J, where J > 0. The sequence satisfying that condition is called a dyadic one. Each data 
vector y of size 2J, where J > 0, can be associated with a piecewise constant function f given 
on [O, 1], generated as follows (see [4]) 

2J - 1 

f(x) = L Yk+I · l(kZ-J $ x < (k + l)Z-J) , 
k=O 

where 1 denotes an indicator of the given set. 



This data function is in the £ 2 ([0, l]) space. To illustrate that, consider the data on wind 
velocity. Since n = 546, the data vector is truncated to a dyadic-length sequence, of n = 512 = 
29 . Figure 1.2 below shows the data (a) in the original form (for n = 512) and (b) in the form 
of the data function. 

Fig.1.2 (a). Data on wind velocity, original sequence 

Fig.1.2 {b) data function on [0, l]. 

Multiresolution analysis provides the framework for examining functions at different scales. 
The information we extract from the vector (y1, y2 , ... , y2,) in "detail" is given by wavelet 
coefficients dj,k , and the information concerning a scale is given by scaling coefficients Cj,k, also 
known as fath er wavelets coe.fficients. The coefficients are obtained by a pyramid algorithm (see 
e.g.[4], [31). We have 

dk = a(Y2k - Y2k- 1) , ck = a (Y2k + Y2k+1) , 
l 

where a = 2- ,. More general form of dk and Ck is given by 

dk = LYIY2k- l , 
IEZ 

ck = L h1Y2k - l , 
IEZ 

where the filtering functions are of the form 

{
2- ½, for 1 = 0, 

91 = -2- ½, for l = 1, 

0, otherwise, 

{
2- ½, for l = 0, 

h1 = -2- ½, for l = 1, 

0, otherwise. 



Each of the above sequences can be obtained at a given resolution j = J - 1, where n = 21 , 

which gives {d;,k} , and {c;,d, j = 0, ... , J - 1 and k = 0, ... , 21 - 1. 

1.3. Scaling coefficients (father wavelets coefficients). The coefficients {cJ,k} , where 
J > 0 and k = 0, ... , 21 - 1 can also be considered in a different way (see [41). Define the Haar 
father wavelet 

(4) ( ) {
1, if XE [0, 1) , 

,PX = 
0, otherwise. 

Dilations and translations of the function ( 4) become 

<PJ,k(x) = 21: ¢(21 x _ k) = {2t, if x E _[r1 k, 2- 1 (k + 1)], 
0, otherwise. 

Let now the finest-level (scale 21 ) father wavelets coefficients be of the form 

(5) CJ,k = fo 1 
f(x) ¢J,k(x ) dx =< f , <PJ,k >, 

where < •, • > denotes an inner product on .C2 [0, 1]. 
The coefficient (5) is just an integral of f(x) (given on [0, 1]) on the interva.l IJ,k = [2- J k, 2- J (k+ 

1)] , and proportional to the local average of f(x) over the interval lJ,k· In fact , the scaling 

coefficients { c1,dt;;1, given by (5) and the associated Haar father wavelets ( 4) define an ap­
proximation of f(x) , given by 

2J - 1 

Jj( x ) = L CJ,k <PJ,k(x). 
k=O 

Additionally, the father wavelet approximation f;+l at finer scale j + 1, where j = 0, ... , J - 1, 
can be obtained by the following rule 

(6) fi(x) = co,o¢ (x) + do,o ·t/;(x) , 
2J - 1 

f;+1(x) = f;( x ) + L d;,k ·t/;;,k(x), 
k=O 

where 
2i- 1 

(7) f;(x) = L c;,k<P;,k(x) , 
k=O 

what gives the wavelet model of the function f(x) on [0, 1] 

J - 12L 1 

(8) f(x) = CO,o¢ (x) +LL d;,kt/;;,k(x), 
j=O k=O 

Note also that , since the set {·t/;;,k(x)};,kEZ forms an orthonormal basis on .C2 , functions 
{¢; ,k(x)}kEZ for each j E Z: are orthonormal bases for spaces v;, j E Z:, such that 

In such a case , functions 

... V_1 C Vo C Vi C 

f;(x) = L c;,k'Pj,k(x) = P;f, where j E Z:, 
kEZ 

can be treated as projections of f onto the space v;. 



2. CASE STUDY 1. MODELLING WIND VELOCITY 

Given the sequence (y1 ,Y2, ... , Yn), where n = 2J , the discrete wavelet transform can be 
performed, due to (6)-(7) , using the Haar wavelets. 
The wavelet decomposition has the following form 

J - 12;_1 

f(x) = co,o,f,(x) +LL di,k'i/Ji,k(x) , 
j = O k = O 

where ·i/Jj,k(x) = r½-,jJ(2- ix - k). 

This means t hat a vector of wavelet coefficients { dj,k} for j = 0, ... , J - l and k = 0, ... , 2i -1 
is produced , together with the last father wavelet coefficient co,o• We are also interested in the 
scaling coefficients Cj,k (aka father wavelet coefficients). 

The analysis is carried out by the use of the threshold package in R. The goal is to approxi­
mate the data vector by wavelets, as well as to denoise them by thresholding. 

The data on wind velocity arc depicted in Figure 2.1. 

f • ~· • 

Fig. 2.1 Wind velocity data. 

To find the coefficients in the model (8), we use R and the WaveThresh package with wd 
function. Since n = 512 = 29 , we get J = 9, and hence j = 0, ... , 8. The wavelets coefficients 
{dj,k} obtained are presented below, for levels j = 0, . .. , 8. 

Fig. 2.2. Highest resolution (j = 8) wavelet coefficients ds ,k, k = 0, ... , 28 - 1, 
Haar wavelets , data on wind velocity. 
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Fig. 2.3. Wavelet coefficients d1,k , on the level of j = 7, k = 0, ... , 27 - 1 
Haar wavelets, data on wind velocity. 

Fig. 2.4. Wavelet coefficients d6,k , on the level of j = 6, k = 0, ... , 63 
Haar wavelets, data on wind velocity. 

Fig. 2.5. Wavelet coefficients d5,k , on the level of j = 5, k = 0, .. , 31 
Haar wavelets , data on wind velocity. 
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Fig. 2.6. Wavelet coefficients d4,k, on the level of j = 4, k = 0, ... , 15 
Haar wavelets, data on wind velocity . 

. -

Fig. 2. 7. vVavelet coefficients d3,k, on the level of j = 3, k = 0, ... , 7 
Haar wavelets , data on wind velocity. 

Fig. 2.8. Wavelet coefficients d2,k, on the level of j = 2, k = 0, ... , 3 
Haar wavelets, data on wind velocity. 



Fig. 2.9. Wavelet coefficients d1,k , on the level of j = l , k = 0, ... , l 
Haar wavelets , data on wind velocity. 

The last wavelet coefficient do,o = 24.766, and co,o = 52.626. 

Having obtained the results, we can see that , some wavelets coefficients for high level resolution 
j = 8 and j = 7 are equal zero, and for some we can observe getting the same values. Tltis is 
a good illustration of a sparsity of a wavelet representation (it can also be seen in Fig. 2.2) , as 
only few of coefficients are non-zero. One can also observe that the coefficients get progressively 
bigger (in absolute size), when the level decreases . 

The results obtained arc also presented in Figure 2.10. 

0 100 200 300 400 500 64 128 192 256 

Translate 
Standard transform Haar wavelet 

Fig.2.10 Haar discrete wavelet coefficients dj,k , j = 0, ... , J - l , k = 0, . .. , 2i - 1, 
data on the wind velocity. 

To get the scaling coefficients (father wavelet coefficients), for scales j = 1, ... , 8, we use R 
and packages Wavethresh and wavelets. The results obtained can be seen in Figure 2.11. 
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Fig. 2.11 Scaling coefficients Cj,k , for j = 1, ... , 8 as approximations 
to the data on wind velocity (where n = 29) , co,o = 52.62642. 

Using the results obtained we can exactly reconstruct the original data on wind velocity. We 
will do this and compare it to the original. The inverse discrete wavelet transform is conducted 
using the function wr , which stands for wavelet reconstruction. Reconstructing the data, we get 

,oo 

Fig. 2.12. Wavelet reconstruction of the original data on wind velocity, 
Haar wavelets. 

To check that the reconstruction is exactly the same, up to numerical error, we can subtract 
the original data from the reconstruction and look at the error. It is small, it equals 9. 769963e-15. 

To the end of that section, we apply the thresholding to the coefficients obtained above, using 
the universal policy and the function threshold. The results are depicted in Figure 2.13 b). 
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Wavelet Decomposition Coefficients 

Transli:itll 
Slanclardlr.msformHaarw3Yelel 

Fig. 2.13.a) Wavelet coefficients, standard Haar transform. 

Wavelet Decomposition Coefflclonts 

'" '" 
Slandard tran~orm Haar 'MMllol 

Fig. 2.13. b) Wavelet coefficients after universal thresholding. 

It can be observed that some of the smaller coefficients have disappeared after thresholding, 
when compared with Figure 2.13 a). The reconstructed data, after thresholding are presented 
in Figure 2.14. 

""' 

Fig. 2.14. Wavelet reconstruction of the data on wind velocity after universal thresholding 
Haar wavelets. 
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3. CASE STUDY 2. MODELLING GUSTS OF WIND 

Now we consider the data on gusts of wind. As previously, the data vector is of the length 
n = 546, and need to be truncated to a dyadic one. We get 

Y = (y1, Y2, · · · , y,.) , 

where n = 512 = 29 , J = 9. Therefore j = 0, ... , 8, and k = 0, . . . , 2i - l. The data vector y is 
depicted in Figure 3.1 

Fig. 3.1 Data on gusts of wind. 

As previously, we are interested in the discrete wavelet transform (using the Haar basis) , i.e.in 
the wavelet coefficients in the model (8), given by The wavelet decomposition has the following 
form 

J-123 -1 

f(x) = co,o¢(x) +LL d;,kif.,;,k(x), 
j = O k = O 

where ·if.,;,k(x) = 2- ½-,;.,(2- ix - k). To perform the analysis, we use R, and its WaveThresh package. 
The results obtained can be seen in Figure 3.2. 

Wavelet OocompositiOfl Coaffichml5 

Fig. 3.2 Wavelet coefficients d;,k, Haar wavelets 
data on gusts of wind. 

Figure 3.3 presents the father wavelet coeffi cients obtained for all levels of resolution: j 
1, . . . , 8. 

11 



Fig. 3.3 Scaling coefficients as approximations to the data on gusts of wind, 
levels j = 1, . .. , 8 

The last father wavelet coefficient is equal co,o = 155.8154. 

Reconstructing the data on gusts of wind from the wavelet coefficients, we get the results 
(Figure 3.4) really close to the original data, presented in Figure 3.1. The absolute error , 
obtained by subtracting the original data on gusts of wind from the reconstructed ones is small, 
equals 2.84217le-11. 

~ 

~ I 
~ 

I 

~~ i ~ 

""' ,00 JOO ,oo 500 

'""~ 
Fig. 3.4. Wavelet reconstruction of the data on gusts of wind, Haar wavelets. 
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As in Section 2, we are also interested in thresholding, using universal policy. T he coefficients 
obtained after thresholding and the reconstructed data on gusts of wind are given in Figures 3.5 
and 3.6, respectively. 

Wavelet Oocomposltion Coefficients 

Fig. 3.5. Wavelet coefficients after universal thresholding, Haar wavelets , 
data on gusts of wind. 

100 200 300 <00 500 

Fig. 3.6. Reconstruction of the data on gusts of wind after universal thresholding, 
Haar wavelets. 

4. DAUBECHIES WAVELETS 

The analysis conducted in Sections 2 and 3, was based on the Haar wavelets , generated from 
the mother wavelet (3). It is the first wavelet in the more regular and compactly supported 
DaubExPhase family of Daubcchics wavelets (see c.g. [5], [4j , [3],etc.). It consists of 10 members, 
having filters from 1 to 10. 

For comparison, therefore, we present here the discrete wavelet transform based on the 
Daubechies wavelets from this family, with filter N = 2 and N = IO. 

We are interested in both data sets under consideration - data on wind velocity (analyzed in 
Section 2) and data on gusts of wind (analyzed in Section 3) . The results are presented below. 
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4.1. Data on wind velocity. 

" 

Wavelet Decomposition Coefficients 

128 

Tllll1S01e 
Slandatd 1ransform DaobcmpCI on ext. phase N11 2 

192 "" 

Fig. 4 .1. Wavelet coefficients, DaubExPhase, with filt er N = 2, data on wind velocity . 

. i • 
] 
Ji • 
~ 
i • • 

Fig. 4.2. Wavelet reconstruction of the data on wind velocity, DaubExPhase , with filter N = 2. 

Wavelet Decomposition Coefficients 

"' 126 

TraMlaM 
StaManl 1ran&fmn OatJl cmpCI on IIXt. phase N=2 

Fig. 4.3. Wavelet coefficients after universal thresholding, DaubExPhase, 
with fi lter N = 2, data on wind velocity. 
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Fig. 4.4. Reconstruction of the data on wind velocity after universal thresholding, 
DaubExPhase , with filter N = 2. 

The results presented in Figures 4.1-4.4 are slightly better than the ones obtained in Section 
2. In particular, the reconstruction of the data, depicted in Figure 4.2 describes the original 
data in a more accurate way (when compared with Figure 2.12). The absolute error is equal 
5.840306<-~ll. Applying the DaubExPhase wavelets with filter N = 10, gives even better results. 

Wavelet Decomposition Coefficients 

Transli:ILe 
st!llldwd 1ranstormOaubcmpct~ ext pt,ase N~10 

Fig. 4.5. Wavelet coefficients , DaubExPhase , with filter N = 10, data on wind velocity. 

300 ""' 500 

Fig. 4.6. Wavelet reconstruction of the data on wind velocity, DaubExPhase, 
with filter N = 10. 
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The absolute error is small , it equals l.58379le-10, and the reconstruction after universal thresh­
olding becomes smooth (Figure 4.8). 

Wavelet Decomposition Coefficfents 

"' "' 258 

Stnndan:I rr:1mlC1"mDaubcmpc:1one-t pl\as.e N=10 

Fig. 4. 7. Wavelet coefficients after universal thresholding, DaubExPhase, 
with filter N = 10, data on wind velocity. 

] . (\ } 
~ " 
j; 

~) 
s . ~ 

,oo ""' 300 ..., 500 

Fig. 4.8. Reconstruction of the data on wind velocity after universal thresholding, 
DaubExPhase, with filter N = 10. 

4.2. Data on gusts of wind. 

., 

Wavelet Decomposition Coefficients 

128 

Tranal!l llt 
Stalldatdtrwidorm Oa\.lbcmpdon ext.~- N•2 

"' 258 

Fig. 4.9 . Wavelet coefficients, DaubExPhase, with filter N = 2, data on gusts of wind. 
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Fig. 4.10. Wavelet reconstruction of the data on gusts of wind, DaubExPhase , 
with filter N = 2. 

.. 

Wavelet Decomposition Coefficients 

128 

Translelll 
Standard lranstoon Daub cmpct ori al((. phase Na2 

,., 

Fig. 4.11. Wavelet coefficients after universal thresholding, DaubExPhase, 
with filter N = 2, data on gusts of wind. 

200 300 '°' 500 

Fig. 4 .12. Reconstruction of the data on gusts of wind after universal thresholding, 
DaubExPhase , with filter N = 2. 

The results presented in Figures 4.9-4.12 are better than the ones obtained in Section 3. We 
can seen that , the reconstructed data are almost the sarne as the original ones, the absolute 
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error ,obtained by subtracting the data on gusts of wind form the reconstructed ones, is equal 
l.548557e-10. Applying the DaubExPhase wavelets with filter N = 10, gives even better results. 

Wavelet Decomposition Coefficients 

" 128 192 ,,. 

Fig. 4.13. Wavelet coefficients, DaubExPhase, with filter N = 10, data on gusts of wind. 

Fig. 4.14. Wavelet reconstruction of the data on gusts of wind, DaubExPhase, 
with filter N = 10. 

The absolute error is small, it equals 4.275833e-10, and the reconstruction after universal thresh­
olding becomes smooth (Figure 4.16). 

Wavelet Decomposition Coefficients 

64 128 '" '"' 
Translate 

Stsndan1 lransfOfm 011th anpct on eit phllse N:10 

Fig. 4.15. Wavelet coefficients after universal thresholding, DaubExPhase, 
with filter N = 10, data on gusts of wind. 
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Fig. 4.16. Reconstruction of the data on gusts of wind after Wlivcrsal thresholding, 

DaubExPhase , with filter N = 10. 

This approach shows that the discrete wavelet transform, based on both - the Haar basis and 
the Daubechies wavelets , can be an useful tool in investigation of wind potential. 
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