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ABSTRACT. The wavelet transform is one of the well-known tools, used for signal processing
and modelling, and being applied to various types of data. In this paper, a wavelet model is
introduced to describe the wind velocity and gusts of wind. The analysis is concentrated on
the discrete wavelet transform, based on the Haar and Daubechies wavelets. The goal is to
approximate the data by wavelets as well as to ’denoise’ them by thresholding.

1. INTRODUCTION

Wavelet transform is one of the well-known and widely used tools for signal analysis. Partic-
ularly noteworthy is the discrete wavelet transform, — a computationary efficient technique to
analyze non-stationary data. One of the reasons wavelets have been successful in many fields,
such as image compression is their ability to efficiently represent all manner of complicated sig-
nals. Wavelets are particularly effective at representing signals with discontinuities, due to their
excellent localization properties. In this paper we conduct a multiresolution analysis of the data
on wind velocity and gusts of wind, using wavelet representation. The idea of using wavelets to
describe physical phenomena, like wind is nothing new. The methods of wavelet transform have
already been used e.g. in [1], [2].

In general, wavelets are functions satisfying certain requirements. The name comes from the
fact that, they should integrate to zero, waving above and below the z-axis. There are many
kinds of wavelets — smooth, compactly supported, given by simple mathematical expressions,
having simple associated filters, etc. The details on the wavelets theory can be found e.g in [6],
[3], we will only shorty recall some facts, concerning the wavelet transform, in particular the
discrete wavelet transform.

Consider a function () € L*(R), such that [g 1(x)dz = 0 and let dilations and translations
of the function ¢(-) be given by

(1) Pix(z) = 2’;':,&(2_]':1; — k), for jke€Z, whereze€R.

The function ¢(-) is called a wavelet (or a mother wavelet), when the family {1; x(-)}; rez forms
an orthonormal basis on £2(R), the vector space of measurable, square integrable functions of
a single variable. The dilation parameter j controls the scale (or size) of the wavelet and the
translation parameter k controls the location of the wavelet. It is easy to observe that, scale
factor 22 normalizes the wavelet basis element ik, for j k € Z, so that ||| = |||, where
the norm || - || is generated by the inner product < -,- >. In the wavelet transform, given a
function f, we want to approximate that function in terms of the wavelet basis (1), i.e.

) @) =32 dixtjnla), ke,
i k

where dj, j, k € Z are the wavelet coefficients.
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A simple example of a wavelet basis is the Haar basis, generated from the mother wavelet
(called the Haar wavelet)
1,if z € [0, 1),
®3) $(e) =4 —Lif z € [3,1),
0, otherwise,
illustrated in Fig.1.1. It is easy to check that the wavelets derived from the mother Haar wavelet
form an orthonormal basis, by observing that (see [5]):
o wavelets with different translate numbers k, but on the same scale j do not have inter-
secting supports,
o wavelets on different scales j either have non-intersecting supports or, one wavelet takes
the value —C' and then C over a set where the other wavelet is constant (for some C),
o < ik, ik >=1, for all j k.
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Fig.1.1 Haar wavelet (x), given by (3).

There are also many other families of wavelets, arising form mother wavelets more regular
than the Haar function (3). One should mention two families of Daubechies wavelets (see [5] or
[4]), namely the eztremal phase or least-asymmetric wavelets. The wavelets in each of these have
compact support. Moreover, indexing each mother wavelet in a family by N, the regularity of
the mother wavelet (and hence all the derived wavelets) is proportional to N, i.e. if N increases,
they become smoother.

1.1. Data on wind velocity and gusts of wind. The data set to be analyzed provides the
information on various properties of wind, such as the measurements of wind velocity, direction,
gusts of wind etc., collected between the 1st and the 4th Jan, 2011. The measurements were
performed every 9 minutes, starting at midnight 1st of Jan, and ending with 23.40, 4th of
January, 2011. The goal of the paper is to find a wavelet model for two data sets — on wind
velocity and gusts of wind.

1.2. Haar wavelets on functions. Given two data sets that, need to be analyzed, we are
interested in wavelet representations of functions generated by (finite) data sets, in particular
on [0,1].
Let y = (y1,v2,---,Yn) be a data vector, such that y; € R, for i = 1,...,n. Assume that

n =27, where J > 0. The sequence satisfying that condition is called a dyadic one. Each data
vector y of size 27, where J > 0, can be associated with a piecewise constant function f given
on [0, 1], generated as follows (see [4])

271

F@) =Y g1 -1(k277 < < (k+1)277),

k=0

where 1 denotes an indicator of the given set.
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This data function is in the £2([0,1]) space. To illustrate that, consider the data on wind
velocity. Since n = 546, the data vector is truncated to a dyadic-length sequence, of n = 512 =
29, Figure 1.2 below shows the data (a) in the original form (for n = 512) and (b) in the form
of the data function.

wind_velocty

Fig.1.2 (b) data function on [0,1].

Multiresolution analysis provides the framework for examining functions at different scales.
The information we extract from the vector (yi,ys,...,yss) in "detail" is given by wavelet
coefficients djy, and the information concerning a scale is given by scaling coefficients c;, also
known as father wavelets coefficients. The coefficients are obtained by a pyramid algorithm (see
e.g.[4], [3]). We have

dk = a(yak — yak—1), ¢k = alyok + yok+1),

where o = 273, More general form of dj and ¢ is given by

k=" g1,

lez
k=" huya1,
ez
where the filtering functions are of the form
2% for [ =0, 273 for | =0,
a=1<-2"% for [ =1, =< —2"% for | =1,
0, otherwise, 0, otherwise.



Each of the above sequences can be obtained at a given resolution j = J — 1, where n = 27,
which gives {d;x}, and {¢jr}, 7 =0,...,J—land k=0,...,2 — 1.

1.3. Scaling coefficients (father wavelets coefficients). . The coefficients {cjx}, where
J>0and k=0,...,27 —1 can also be considered in a different way (see [4]). Define the Haar
father wavelet

" oa) = {l,ifze [0,1),

0, otherwise.
Dilations and translations of the function (4) become
J
J 2z if z € 277k, 277 (k + 1)],
o1ale) = 24627 — 1) = s el
0, otherwise.

Let now the finest-level (scale 27) father wavelets coefficients be of the form

1
(5) = /0 F@)pap(e)de =< f. b >,

where < -, - > denotes an inner product on £2[0, 1].

The coefficient (5) is just an integral of f(z) (given on [0, 1]) on the interval Iz = 277k, 277 (k+
1)], and proportional to the local average of f(x) over the interval ;. In fact, the scaling
coefficients {C]_k}zial, given by (5) and the associated Haar father wavelets (4) define an ap-

proximation of f(z), given by
27-1

fa(z) = z kb ak (@)
k=0
Additionally, the father wavelet approximation f; at finer scale j+1, where j = 0,...,J—1,
can be obtained by the following rule

(6) fi(x) = coop(x) + dootp(),
271
fira(@) = fi(@) + Y digtbip(e),
k=0
where
271
(7) fi(@) =3 cudixl),
k=0
what gives the wavelet model of the function f(x) on [0,1]
J-121-1
(8) f(@) = copd(@) + Y Y dixtbia(a),
7=0 k=0

where ¢; (x) = 2_"}1/;(2_11' — k).
Note also that, since the set {1;x(z)};jkez forms an orthonormal basis on £2, functions
{¢;x(2)}rez for each j € Z are orthonormal bases for spaces Vj, j € Z, such that
LLVacwaowvic...
In such a case, functions
fi@) =" cixpik(z) = Pif, where j€Z,
kez
can be treated as projections of f onto the space Vj.
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2. CASE STUDY 1. MODELLING WIND VELOCITY

Given the sequence (y1,ya,...,yn), where n = 27, the discrete wavelet transform can be
performed, due to (6)-(7), using the Haar wavelets.
The wavelet decomposition has the following form
J-121-1
f@) = cond(@) + Y D digthiala),
3=0 k=0
where ;. (x) = 2 5(27 0 — k).

This means that a vector of wavelet coefficients {d;x} for j =0,...,J—land k =0,...,2/—1
is produced, together with the last father wavelet coefficient ¢y . We are also interested in the
scaling coefficients ¢;x (aka father wavelet coeflicients).

The analysis is carried out by the use of the threshold package in R. The goal is to approxi-
mate the data vector by wavelets, as well as to denoise them by thresholding.

The data on wind velocity are depicted in Figure 2.1.

% N\J

10 RN i ),

T T T
0 1 300 400 500

x

Fig. 2.1 Wind velocity data.

To find the coefficients in the model (8), we use R and the WaveThresh package with wd
function. Since n = 512 = 2%, we get J = 9, and hence j = 0,...,8. The wavelets coefficients
{d;x} obtained are presented below, for levels j =0,...,8.

wavele!_coeff, level=8
0 2
L L
B —
S

Fig. 2.2. Highest resolution (j = 8) wavelet coefficients dgx, k =0, ... ,28 -1,
Haar wavelets, data on wind velocity.
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Haar wavelets, data on wind velocity.
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Fig. 2.4. Wavelet coefficients dg 1, on the level of j =6, k =0,...,
Haar wavelets, data on wind velocity.
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Fig. 2.5. Wavelet coefficients ds, on the level of j =5,k =0,...,
Haar wavelets, data on wind velocity.
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Fig. 2.6. Wavelet coefficients d4, on the level of j =4,k =0,...,15
Haar wavelets, data on wind velocity.
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Fig. 2.7. Wavelet coefficients d3x, on the level of j =3, k=0,...,7
Haar wavelets, data on wind velocity.
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Fig. 2.8. Wavelet coefficients dgx, on the level of j =2, k=0,...,3

Haar wavelets, data on wind velocity.
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Fig. 2.9. Wavelet coefficients dyx, on the level of j =1,k =0,...,1
Haar wavelets, data on wind velocity.

The last wavelet coefficient dgp = 24.766, and ¢y = 52.626.

Having obtained the results, we can see that, some wavelets coefficients for high level resolution
j = 8 and j = 7 are equal zero, and for some we can observe getting the same values. This is
a good illustration of a sparsity of a wavelet representation (it can also be seen in Fig. 2.2), as
only few of coefficients are non-zero. One can also observe that the coefficients get progressively
bigger (in absolute size), when the level decreases.

The results obtained are also presented in Figure 2.10.
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X Translate

Standard transform Haar wavelet

Fig.2.10 Haar discrete wavelet coefficients djx, j =0,...,J —1, k=0,...,27 — 1,
data on the wind velocity.

To get the scaling coefficients (father wavelet coefficients), for scales j = 1,...,8, we use R
and packages Wavethresh and wavelets. The results obtained can be seen in Figure 2.11.
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Fig. 2.11 Scaling coefficients ¢;, for j = 1,...,8 as approximations
to the data on wind velocity (where n = 29), ¢ o = 52.62642.
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Using the results obtained we can exactly reconstruct the original data on wind velocity. We
will do this and compare it to the original. The inverse discrete wavelet transform is conducted
using the function wr, which stands for wavelet reconstruction. Reconstructing the data, we get

reconstructed function

Fig. 2.12. Wavelet reconstruction of the original data on wind velocity,
Haar wavelets.

To check that the reconstruction is exactly the same, up to numerical error, we can subtract
the original data from the reconstruction and look at the error. It is small, it equals 9.769963e-15.
To the end of that section, we apply the thresholding to the coefficients obtained above, using
the universal policy and the function threshold. The results are depicted in Figure 2.13 b).
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Fig. 2.13.a) Wavelet coefficients, standard Haar transform.
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Fig. 2.13.b) Wavelet coefficients after universal thresholding.

It can be observed that some of the smaller coefficients have disappeared after thresholding,
when compared with Figure 2.13 a). The reconstructed data, after thresholding are presented

in Figure 2.14.
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Fig. 2.14. Wavelet reconstruction of the data on wind velocity after universal thresholding
Haar wavelets.

10



3. CASE STUDY 2. MODELLING GUSTS OF WIND

Now we consider the data on gusts of wind. As previously, the data vector is of the length
n = 546, and need to be truncated to a dyadic one. We get

Y =(1,y2 - ¥n)s

where n = 512 =29 J = 9. Therefore j =0,...,8,and k =0,...,27 — 1. The data vector y is
depicted in Figure 3.1

o

Lkl
s M Wﬂ*{”MWFWMWWI -

100

gusts of wind

°

index
Fig. 3.1 Data on gusts of wind.

As previously, we are interested in the discrete wavelet transform (using the Haar basis), i.e.in
the wavelet coefficients in the model (8), given by The wavelet decomposition has the following
form

J-129-1
F@) = coop(@) + 3 Y djgbix(),

=0 k=0

where ¢} x(z) = 2-24(27z—k). To perform the analysis, we use R, and its WaveThresh package.
The results obtained can be seen in Figure 3.2.

Wavelet Decomposition Coefficients

o
L

1
L

Resolution Level
8 7 6 5 4 3 2
L

T T T T
o 64 128 192 256
Transiate
Standard ransform Haar wavelet

Fig. 3.2 Wavelet coefficients d; , Haar wavelets
data on gusts of wind.

Figure 3.3 presents the father wavelet coefficients obtained for all levels of resolution: j =

1,...,8.
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Fig. 3.3 Scaling coefficients as approximations to the data on gusts of wind,
levels j =1,...,8

The last father wavelet coefficient is equal ¢ = 155.8154.

Reconstructing the data on gusts of wind from the wavelet coefficients, we get the results
(Figure 3.4) really close to the original data, presented in Figure 3.1. The absolute error,
obtained by subtracting the original data on gusts of wind from the reconstructed ones is small,
equals 2.842171e-14.

| M{v | MM NJNMWMMWQ L

Index

Fig. 3.4. Wavelet reconstruction of the data on gusts of wind, Haar wavelets.
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As in Section 2, we are also interested in thresholding, using universal policy. The coefficients
obtained after thresholding and the reconstructed data on gusts of wind are given in Figures 3.5

and 3.6, respectively.

Wavelet Decomposition Coefficients

Resolution Level

o

]

T T T
0 64 128 192 25

Transiate
Standard transform Haar wavelet

Fig. 3.5. Wavelet coefficients after universal thresholding, Haar wavelets,
data on gusts of wind.

J MHF

Fig. 3.6. Reconstruction of the data on gusts of wind after universal thresholding,
Haar wavelets.

12

reconstructed function

T

500

e
L‘L
a0 a0

200
Index

4. DAUBECHIES WAVELETS

The analysis conducted in Sections 2 and 3, was based on the Haar wavelets, generated from
the mother wavelet (3). It is the first wavelet in the more regular and compactly supported
DaubExPhase family of Daubechies wavelets (see e.g.|5], [4], [3],etc.). It consists of 10 members,

having filters from 1 to 10.

For comparison, therefore, we present here the discrete wavelet transform based on the
Daubechies wavelets from this family, with filter N =2 and N = 10.

We are interested in both data sets under consideration — data on wind velocity (analyzed in
Section 2) and data on gusts of wind (analyzed in Section 3). The results are presented below.
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4.1. Data on wind velocity.

‘Wavelet Decomposition Coefficients

Resoluton Level

T T T
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Transiate
Standard transform Daub cmpct on ext. phase N=2

Fig. 4.1. Wavelet coefficients, DaubExPhase, with filter N = 2, data on wind velocity.
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Fig. 4.2. Wavelet reconstruction of the data on wind velocity, DaubExPhase, with filter N = 2.

Wavelet Decomposition Coefficients
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Transiate
Standard transform Daub cmpct on ext. phase N=2

Fig. 4.3. Wavelet coefficients after universal thresholding, DaubExPhase,
with filter N = 2, data on wind velocity.
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Fig. 4.4. Reconstruction of the data on wind velocity after universal thresholding,
DaubExPhase, with filter N = 2.

The results presented in Figures 4.1-4.4 are slightly better than the ones obtained in Section
2. In particular, the reconstruction of the data, depicted in Figure 4.2 describes the original
data in a more accurate way (when compared with Figure 2.12). The absolute error is equal
5.840306¢-11. Applying the DaubExPhase wavelets with filter N = 10, gives even better results.

Wavelet Decomposition Coefficients

Resolution Level

T T T T
0 64 128 192 256

Transiale
ext ph

Fig. 4.5. Wavelet coefficients, DaubExPhase, with filter N = 10, data on wind velocity.
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Fig. 4.6. Wavelet reconstruction of the data on wind velocity, DaubExPhase,
with filter N = 10.
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The absolute error is small, it equals 1.583791e-10, and the reconstruction after universal thresh-
olding becomes smooth (Figure 4.8).

Wavelet Decomposition Coefficients
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Standard transform D:m ul:pawen phase N=10
Fig. 4.7. Wavelet coefficients after universal thresholding, DaubExPhase,
with filter N = 10, data on wind velocity.
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Fig. 4.8. Reconstruction of the data on wind velocity after universal thresholding,
DaubExPhase, with filter N = 10.

4.2. Data on gusts of wind.

‘Wavelet Decomposition Coefficients

Resolution Level
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Fig. 4.9. Wavelet coefficients, DaubExPhase, with filter N = 2, data on gusts of wind.
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Fig. 4.10. Wavelet reconstruction of the data on gusts of wind, DaubExPhase,
with filter N = 2.

Wavelet Decomposition Coefficients

Resolution Level

8 7 6 5 4
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; o 28 a2 A
Translate
Standard transform Daub cmpct on ext. phase N=2
Fig. 4.11. Wavelet coefficients after universal thresholding, DaubExPhase,
with filter N = 2, data on gusts of wind.

reconstructed function
10
L
pa—

Fig. 4.12. Reconstruction of the data on gusts of wind after universal thresholding,
DaubExPhase, with filter N = 2.

The results presented in Figures 4.9-4.12 are better than the ones obtained in Section 3. We
can seen that, the reconstructed data are almost the same as the original ones, the absolute
17



error,obtained by subtracting the data on gusts of wind form the reconstructed ones, is equal
1.548557¢-10. Applying the DaubExPhase wavelets with filter N = 10, gives even better results.

Wavelet Decomposition Coefficients

T T T T
0 64 128 192 256

Transiate
Standard transform Haar wavelet

Fig. 4.13. Wavelet coefficients, DaubExPhase, with filter N = 10, data on gusts of wind.

reconstructed function
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Fig. 4.14. Wavelet reconstruction of the data on gusts of wind, DaubExPhase,
with filter N = 10.
The absolute error is small, it equals 4.275833e-10, and the reconstruction after universal thresh-
olding becomes smooth (Figure 4.16).

‘Wavelet Decomposition Coefficlents
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Fig. 4.15. Wavelet coeflicients after universal thresholding, DaubExPhase,
with filter N = 10, data on gusts of wind.
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Fig. 4.16. Reconstruction of the data on gusts of wind after universal thresholding,
DaubExPhase, with filter NV = 10.
This approach shows that the discrete wavelet transform, based on both — the Haar basis and
the Daubechies wavelets, can be an useful tool in investigation of wind potential.
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